Abstract. Necrotizing enterocolitis (NEC) is a life-threatening disease that occurs in premature infants. The aim of the present study was to investigate the effects of berberine, an isoquinoline alkaloid mainly used to treat digestive diseases, in a rat model of NEC. NEC models were established in newborn rats via inhalation of \(\text{N}_2 \) for 90 sec every 4 h and oral administration of 4 mg/kg/day lipopolysaccharides on days 0 and 1. Berberine was administered via oral gavage. In the NEC model group, Toll-like receptor (TLR)4, nuclear factor NF-\(\kappa \)B (NF-\(\kappa \)B), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-\(\alpha \), interleukin (IL)-6 and IL-10 were upregulated. Symptoms of NEC in the berberine intervention group were significantly relieved, with a clear reduction in the incidence of NEC compared with the NEC group. TLR4, NF-\(\kappa \)B, iNOS, TNF-\(\alpha \), IL-6 and IL-10 expression was decreased following berberine intervention. Furthermore, the expression of mucin-2 (MUC2) and RNA polymerase \(\sigma \) factor SigA (SIgA) were decreased in the NEC model group and increased following berberine intervention, when compared with the untreated group. It was also demonstrated that the incidence of NEC was reduced following berberine administration, possibly owing to changes in the inflammatory responses. The results of the current study support a potential therapeutic role of berberine for the treatment of NEC.

Introduction

Necrotizing enterocolitis (NEC) is a serious, life-threatening disease in premature infants. The incidence of NEC has increased in spite of clinical developments (1-3). Additionally, the mortality rate of infants with NEC remains high (~20-30%), although the clinical outcome for many premature infants has improved (4). Severe NEC is often accompanied by the necrosis of the intestinal wall and perforation, as well as peritonitis, with a very high mortality rate (5). The severity of NEC varies from case to case may affect the entire intestine (6,7). Studies have demonstrated that various factors are associated with an increased risk of developing NEC; its pathogenesis has been explored using animal models in an attempt to develop more effective therapeutic strategies (8,9). The latest studies have indicated that inflammatory cascades serve an important role in the pathogenesis of neonatal NEC (10,11). Studies have hypothesized that NEC is caused by an uncontrolled inflammatory response induced by a characteristic intestinal bacterial colonization in premature infants (12,13). Various inflammatory mediators, receptors and signal transduction pathways are involved in the pathophysiological processes of the disease; however, it remains unclear which factors are most crucial (1,2). These factors are potential targets for regulating the prevention and treatment of NEC (14). According to some studies, an inflammatory cascade involving inflammatory cytokines serve a role in the onset and progression of NEC (15,16). The aim of the present study was to develop a method for establishing an animal model of NEC to screen for effective treatment agents.

Berberine, an alkaloid widely used in traditional Chinese medicine to treat gastrointestinal infections, is an effective antimicrobial treatment with regulatory effects on glucose and lipid metabolism, as well as insulin resistance (17,18). The anti-inflammatory and anti-oxidant effects of berberine and its suppression of gene transcription were recently reported (17). In addition, berberine maintains the junctions between intestinal mucosa (19). Furthermore, the efflux pump in the intestine mucosa promotes berberine distribution in the gastrointestinal epithelia (19). Therefore, the current study aimed to investigate how berberine affects NEC development in a rat model of NEC.

Materials and methods

NEC model establishment. A total of 60 newborn Sprague-Dawley (SD) rats (6-8 g; 30 Male, 30 Female) were obtained from pregnant SD rats (Shanghai SLAC Laboratory Animal Co., Ltd., Shanghai, China) on day 21 of gestation. Thereafter, newborn rats were fed with 0.1 ml artificial milk...
qPCR was performed in triplicate using SYBR Premix Ex Taq (Takara, Dalian, Liaoning, China) and SsoFast™ Probes Supermix (Bio-Rad Laboratories, Inc., Hercules, CA, USA) and a standard thermocycling procedure (35 cycles) was performed on a Bio-Rad CFX96™ Real-time PCR System (Bio-Rad Laboratories, Inc.). The thermocycling conditions were as follows: 95°C for 2 min; followed by 35 cycles of 95°C for 1 min, 60°C for 1 min and 72°C for 1 min; then extension was performed at 72°C for 10 min. The 2^−ΔΔCt method was used to analyze the relative changes in gene expression (4). The primers used were as follows: TLR4 forward, 5'-GCATCATCT TCAATTGCTCCTTGA-3' and reverse, 5'-CTTGTTCCTTCT CTGCTGTGTGTG-3'; NF-κB forward, 5'-ATTGCAGAGCAT GATCCCCCTAC-3' and reverse, 5'-CGGAATCGAATCCCC CTCCTGTGG-3'; iNOS forward, 5'-GAGGCCCAGGGAGGAG AGAGATCCCG-3' and reverse, 5'-TCCATGCAGACAACC TTGGTGTGTG-3'; TNF-α forward, 5'-CCAGACCCCTCAG ACTCAGATC-3' and reverse, 5'-CAGTGTGTGGTTCGC TAGAC-3'; and β-actin forward, 5'-CTAAGGGCCACCCGTG AAAAG-3' reverse, 5'-TACATGCTGGTTGTTG-3'.

Western blot analysis. Total protein was extracted from ileal tissues with lysis buffer (Nanjing KeyGen Biotech Co., Ltd., Nanjing, China). The protein concentration was determined using a BCA assay. Proteins (50 μg/lane) were separated by 12% SDS-PAGE and transferred to a polyvinylidene difluoride membrane and blocked with 50 g/l skimmed milk at room temperature for 1 h. Primary antibodies against TLR4 (1:1,000; cat. no. ab13556), iNOS (1:1,000; cat. no. ab3523) and NF-κB (1:1,000; cat. no. ab32536; all Abcam) were incubated with the membranes overnight at 4°C, following which the membranes were incubated with an horseradish peroxidase-conjugated antibody (1:5,000; cat. no. 7071; Cell Signaling Technology, USA) at room temperature for 1 h. The protein bands were visualized with a G-BOX imaging system (Syngene Europe, Cambridge, UK) using an ECL assay kit (Pierce; Thermo Fisher Scientific, Inc.). Western blotting results were analyzed by ImageJ software 1.8.0 (National Institutes of Health, Bethesda, MD, USA).

Statistical analysis. SPSS 17.0 software (SPSS, Inc., Chicago, IL, USA) was used for statistical analyses and all data are presented as the mean ± standard deviation. One-way analysis of variance followed by a Tukey's post-hoc test was used to compare multiple groups and the least significant difference test was performed for pair-wise comparisons. P<0.05 was considered to indicate a statistically significant difference.

Results

Berberine treatment decreases the incidence and severity of NEC. In the control, NEC and NEC + berberine groups, the incidence of NEC was 0, 65 and 25%, respectively (Fig. 1). A significant difference in the incidence rate of NEC between the NEC group and NEC + berberine group was observed (Fig. 2). Fig. 2B presents the representative microscopic morphology of the intestinal samples. All rats in grade M or I exhibited bloody diarrhea (data not shown).

Berberine treatment decreases TLR4 expression in ileal tissues. In the NEC group, the expression of TLR4 mRNA and protein was significantly and markedly increased, respectively, at 48 h compared with the control group (Fig. 3). However, in
Berberine treatment decreases cytokine expression in ileal tissues. In the NEC group, NF-κB, iNOS and TNF-α mRNA expression was significantly increased at 48 h compared with the control group (Fig. 4A). However, in the NEC + berberine group, NF-κB, iNOS and TNF-α mRNA expression was significantly decreased compared with the NEC group. Similarly, NF-κB and iNOS protein levels were increased in the NEC group, while these levels were decreased following berberine treatment (Fig. 4B).

Berberine treatment decreases IL-6 and IL-10 expression in the ileum and serum. In the NEC group, the ileal expression of IL-6 and IL-10 was significantly increased at 48 h compared with the control group (Fig. 5A). However, in the NEC + berberine group, ileal IL-6 and IL-10 were significantly lower compared with the NEC model group. Similar results were observed in serum samples (Fig. 5B).

Discussion

NEC is a common disorder that affects newborns, primarily occurring in preterm infants of very low birth weight (14). In the present study, NEC symptoms were evident 2 days after the model was established. There are differences in the clinical manifestation of NEC; mild symptoms, including a swollen abdomen and diarrhea, can rapidly develop into necrosis of the intestinal wall, perforation or peritonitis (2,8). Therefore, prevention is particularly important. Studies have suggested several preventive measures, including the use of probiotics to regulate intestinal microecology, intestinal supplementation with arginine and glutamine and treatment with glucocorticoids (21,22). However, the efficacy of these treatments has not yet been proven and their use remains controversial. Therefore, the discovery of safe and effective preventive methods has become a research hotspot.

Symbiotic bacteria often colonize the sterile gut of neonates, which can increase the incidence of NEC (23). TLRs, cell transmembrane receptors of the natural immune system, are critical for pathogen resistance (24). Berberine has been demonstrated to effectively reduce inflammatory cytokine levels (25) and to attenuate NEC by inhibiting inflammation and apoptosis via the phosphatidylinositol 4,5-bisphosphate 3-kinase/RAC-α serine/threonine-protein kinase signaling pathway.
The authors of the present study inferred that berberine may be effective at reducing the incidence and severity of NEC through its anti-inflammatory effects. NEC is caused by multiple factors that primarily act through the inflammatory cascade (10). A possible target for NEC treatment is the regulation of key components of the inflammatory response (6). More importance has been attached to the effects of TLR4 in the pathogenesis of neonatal NEC (27). Different TLRs recognize their respective pathogens, triggering signaling pathways, thereby activating a series of immune responses (28). The p65/p50 dimer of NF-κB was identified in nearly all nucleated eukaryotic cells (29). TLR2 and TLR4 are normally lowly expressed in intestinal epithelial cells, and so they have been used to monitor the state of the intestinal flora (24). NF-κB remains inactive in the cytoplasm until intestinal epithelial cells are stimulated by bacteria acting on the TLRs, triggering the activation of downstream signaling pathways and causing NF-κB to migrate into the nuclei (30). Thereafter, NF-κB has been demonstrated to further promote the overexpression of cytokines associated with immune responses (5). In an LPS-induced animal model of NEC, activated TLR4 triggered an inflammatory cascade,
thereby regulating intestinal injury repair in neonates and accelerating the development and progression of NEC (4). IL-6 causes neutrophils to recruit and release a large number of active oxygen radicals in lesion areas by virtue of chemotaxis and coordinates with other inflammatory cells to give a cytotoxic effect (31). A positive feedback loop is formed by the stimulation of inflammatory mediators, which can lead to excessive inflammatory responses, injury and necrosis of the intestinal tissues, as well as destruction of the mucosal barrier, thereby developing into NEC (32).

Mucin is a major component of the intestinal mucus layer, covering the surface of the intestinal epithelial cells and acting as the first line of defense (33). Among the 20 known types of mucin, secretory mucin MUC2 was the first to be identified and exists in the highest concentration in the human intestinal cavity (34). MUC2 covers the surface of the intestinal cavity and forms a gelatinous mucus layer to preserve complete barrier function (34). Previous studies have demonstrated that MUC2 is involved in the pathogenesis of NEC (6). SlgA is an immunoglobulin on the surface of intestinal mucosa, which serves an important role in the defense of gastrointestinal mucosa (35). A Previous study has demonstrated that the expression of SlgA was reduced in NEC rats, compared with rats, and that this effect was weakened by Insulin-like growth factor I (7). In the present study, changes were observed in the ileal expression of MUC2. The results indicated that MUC2 and SlgA expression was lower in the NEC group. In the NEC + berberine group, MUC2 and SlgA expression was similar to that observed in the control group.

In summary, the results of the present study demonstrated that enteral administration of berberine ameliorates the clinical symptoms and decreases the incidence of NEC in a neonatal rat model. This may be achieved via berberine-induced TLR4 downregulation, which in turn inhibits the production of inflammatory mediators, and the upregulated expression of MUC2 and SlgA. Together, these expression changes may protect the mechanical and immuno-barrier functions of the intestinal mucosa. Therefore, berberine may be a potential therapeutic agent for the treatment of NEC.

Acknowledgments

Not applicable.

Funding

The current study was supported by the Natural Science Foundation of China (grant no. 81460249) and Guizhou Province Joint Fund [qianKeHe LH (2015); grant no. 7478].

Availability of data and materials

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

Authors' contributions

YJ designed and planned the study. YJ and FP collected the data. YJ, FP and YS analyzed the data. JJ interpreted the data. YJ and JJ analysed the literature and wrote the manuscript.

Ethics approval and consent to participate

The present study was approved by the Animal Ethics Committee of The Second People's Hospital of Liaocheng.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

29. Hong JT: NF-kB as a mediator of brain inflammation in AD. CNS Neurol Disord Drug Targets, 2017.

